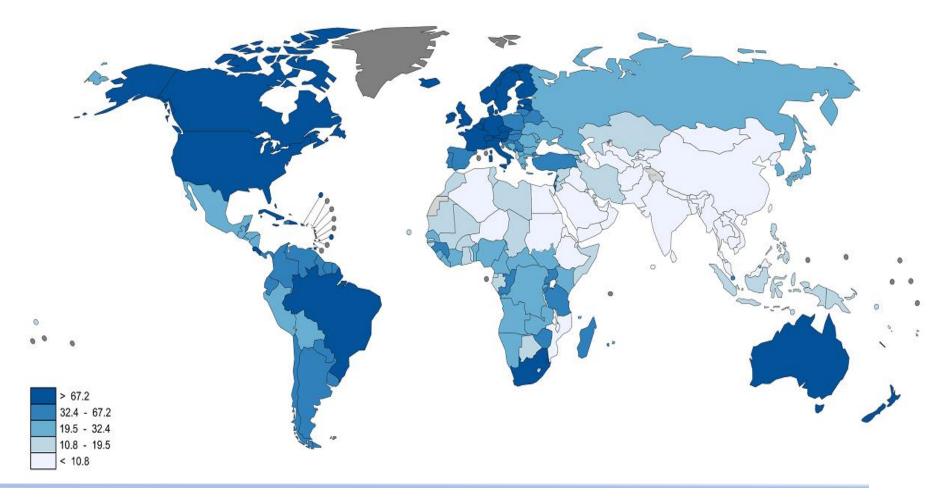

Familial risk and inherited genetics in prostate cancer

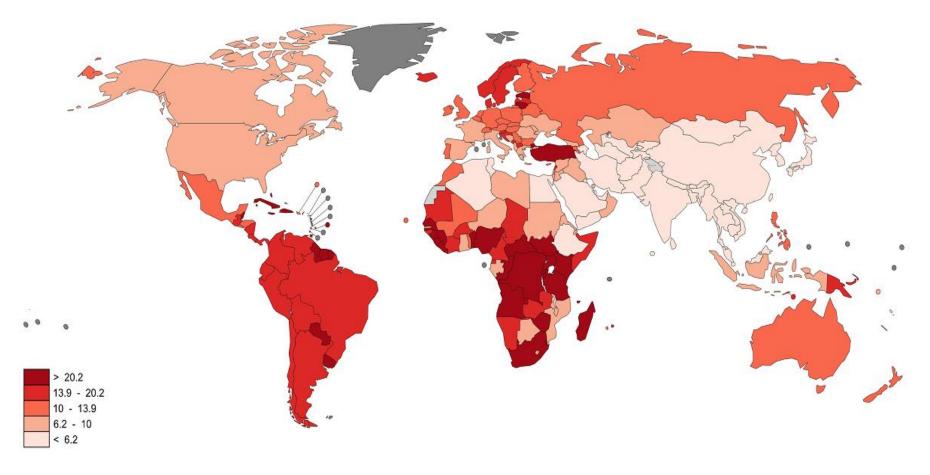
IX International Congress of Uro-Oncology Sao Paolo Brazil

> Lorelei Mucci, ScD Associate Professor of Epidemiology Harvard TH Chan School of Public Health

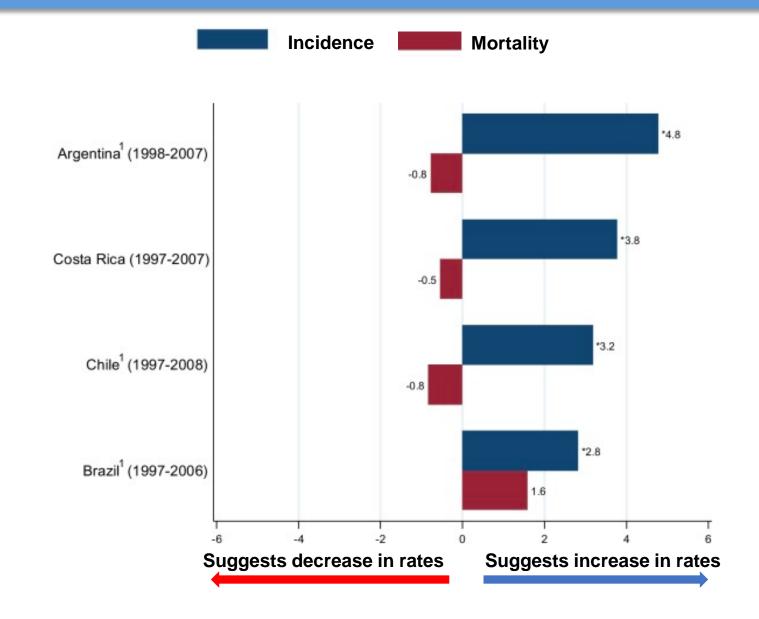
Leader, Cancer Epidemiology Dana-Farber/Harvard Cancer Center



1


Geographic differences in prostate cancer incidence

- \rightarrow 1.6 million incident prostate cancers in 2015
- \rightarrow Leading causes of cancer incidence in 103 countries
- → 400,000 cases per year in Latin America: highest rates in French Guyana and Brazil



Geographic differences in prostate cancer mortality

- \rightarrow 366,000 deaths from prostate cancer globally in 2015
- \rightarrow Leading cause of cancer death in 29 countries (4th globally)
- \rightarrow 65,000 men die of prostate cancer each year in Latin America

Trends in prostate cancer incidence and mortality over time

Risk factor	Direction of association	Strength of evidence
Older age	ተተ	Strong
African descent		Strong
Family history	^	Strong
Genetic risk loci	<u>ተተ</u>	Strong
Taller neight	ŤŤ	Probable

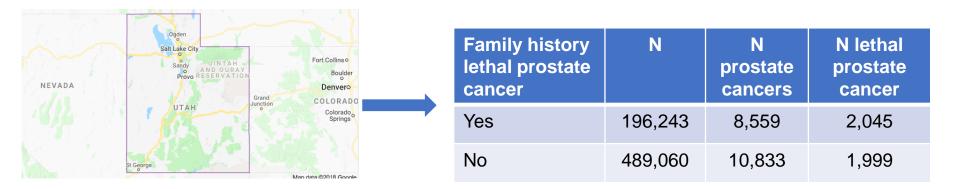
Original Investigation Familial Risk and Heritability of Cancer Among Twins in Nordic Countries JAMA. 2016;315(1):68-76. doi:10.1001/jama.2015.17703

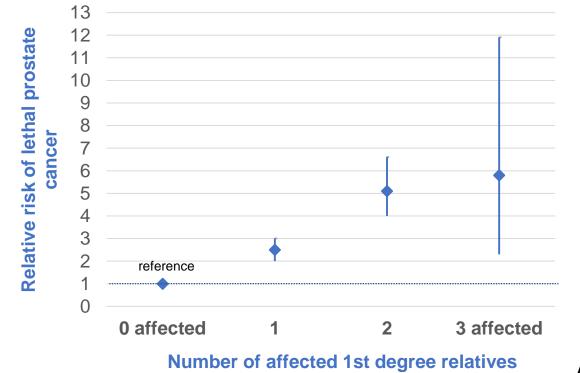
Lorelei A. Mucci, ScD, MPH; Jacob B. Hjelmborg, PhD; Jennifer R. Harris, PhD; Kamila Czene, PhD; David J. Havelick, ALM; Thomas Scheike, PhD; Rebecca E. Graff, ScD; Klaus Holst, PhD; Sören Möller, PhD; Robert H. Unger, BS; Christina McIntosh, SM; Elizabeth Nuttall, BA; Ingunn Brandt, MSc; Kathryn L. Penney, ScD; Mikael Hartman, MD, PhD; Peter Kraft, PhD; Giovanni Parmigiani, PhD; Kaare Christensen, MD, PhD; Markku Koskenvuo, MD, PhD; Niels V. Holm, MD, PhD; Kauko Heikkilä, PhLic; Eero Pukkala, PhD; Axel Skytthe, PhD; Hans-Olov Adami, MD, PhD; Jaakko Kaprio, MD; for the Nordic Twin Study of Cancer (NorTwinCan) Collaboration

	Denmar k	Finland	Norway	Sweden
Birth cohorts	1870–1999	1887–1957	1896–1979	1886–1999
N male twins	53076	12154	12318	65919
N MZ/DZ pairs	6092/11132	1792/4222	2392/3026	8438/11731
End of Follow- up	12/31/2009	12/31/2009	12/31/2008	12/31/2009
N MZ/DZ pairs uncensored at follow-up	1300/2456	388/819	231/298	1632/2843
Cancer registration since	1943	1953	1953	1958
N prostate cancer cases	821	547	356	2385

www.nortwincan.org

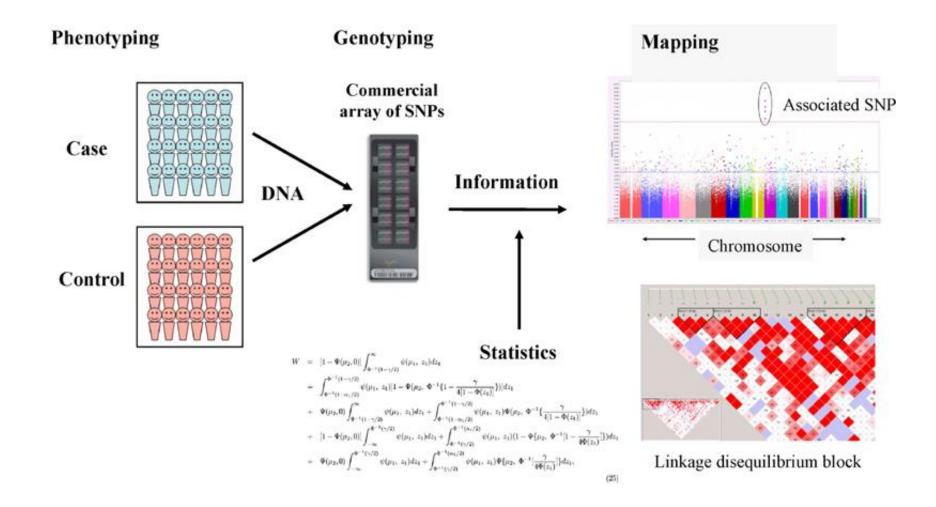
Familial risk and heritability in NorTwinCan cohort

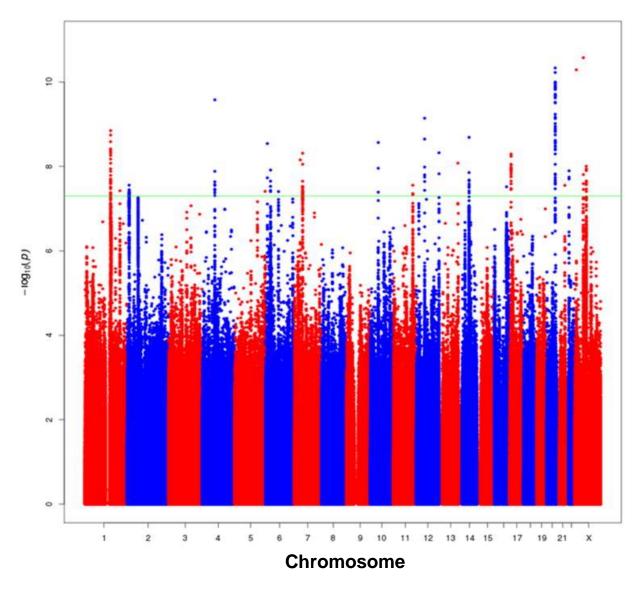

	MZ	MZ	DZ	DZ
	Concordant	Discordant	Concordant	Discordant
N twin pairs	197	807	148	1719



Heritability of prostate cancer = 58%

www.nortwincan.org


Family history and risk of lethal prostate cancer

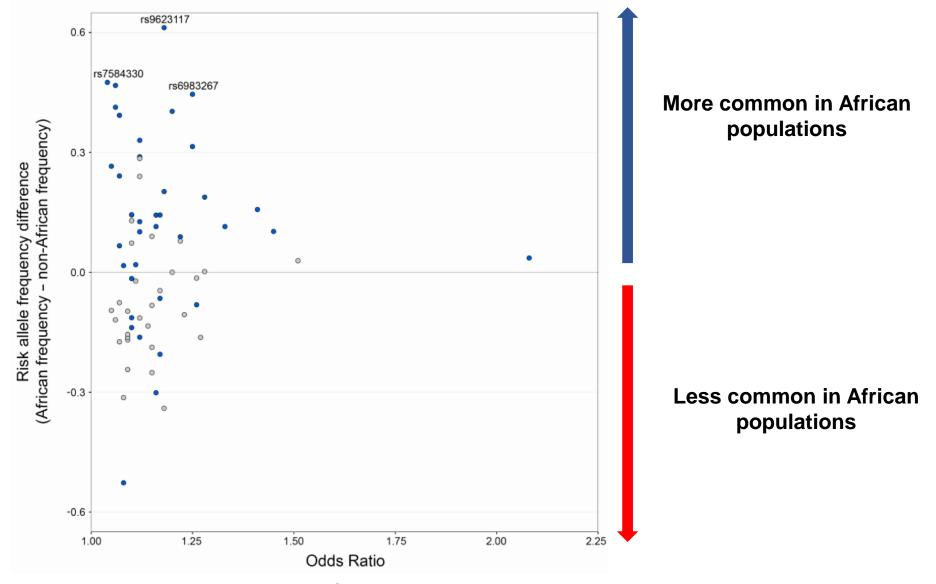


Albright et al, 2017

What is a Genome Wide Association Study (GWAS)

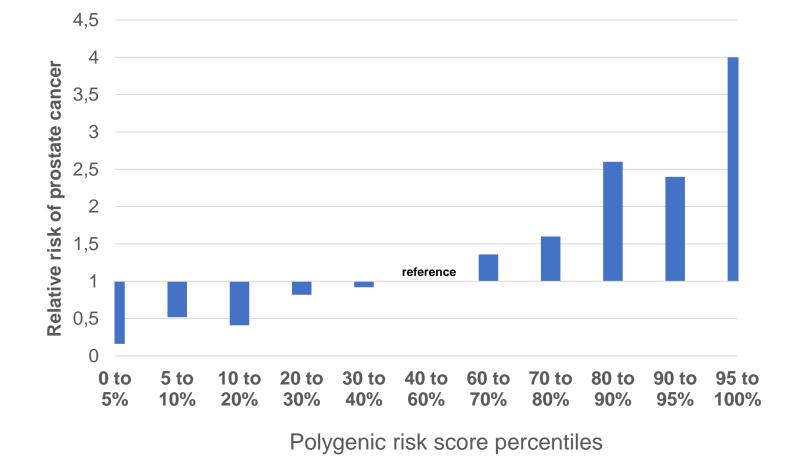
Common genetic risk SNPs and prostate cancer risk

>180 validated inherited prostate cancer risk Single Nucleotide Polymorphisms (SNPs)


Explain one-third of heritability of prostate cancer

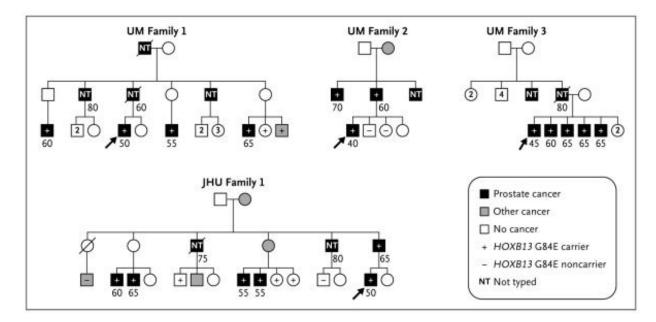
Unique genetic risk loci by race/ethnicity

Most SNPs equally associated with aggressive and indolent prostate cancer


Hoffman et al, Cancer Discov 2015 Al Olaama et al, Nat Genet 2014 Shui et al, Eur Urology 2014

Differences in prostate cancer SNPs by ancestry

For associations of SNPs and prostate cancer


Polygenic risk score and risk of prostate cancer

Szulkin et al, Prostate 2015

Rare genetic variants and prostate cancer risk: HOXB13

Screened 200 genes in 17q21-22 region: identified G84E in HOXB13

In unselected patients, prevalence of mutation:

- 0.1% in controls
- 1.4% in prostate cancer cases
- 3.1% in early onset, familial prostate cancer
- Identified other rare variants in HOXB13

Not differentially associated with high-grade or cancer mortality

Ewing et al, NEJM 2012 Kote-Jarai Z, Ann Oncol 2015

<u>Inherited</u> DNA repair alterations in 692 men with metastatic prostate cancer and compared to localized disease

Gene Mutation	% in metastatic cases	% in localized cancers	Relative risk
ATM	2%	0.25%	6.3 (3.2-11.3)
BRCA1	0.9%	0.2%	3.9 (1.4-8.5)
BRCA2	5.3%	0.3%	18.6 (13.2-25.3)
CHEK2	1.9%	0.6%	3.1 (1.5-5.6)
Any inherited mutation in DDR	12%	4.6%	

Prevalence of mutations did not differ by age or family history

Pritchard, 2016 NEJM

Consensus Panel: Role of genetic testing for inherited prostate cancer risk

Gene	Cancer Syndrome	Evidence for association with prostate cancer risk	Screening
BRCA1	Hereditary breast and ovarian cancer	А	At age 45
BRCA2	Hereditary breast and ovarian cancer	А	At age 45
DNA Mismatch Repair Genes	Lynch syndrome	В	
HOXB13	Hereditary prostate cancer	A	
TP53	Li Fraumeni Syndrome	D	
ATM		С	
CHEK2		С	

*Grade of evidence for PCA is summarized as follows: (A) High-grade evidence: At least one prospectively designed study or three or more large validation studies or three or more descriptive studies; (B) Moderate-grade evidence: two cohort or case-control studies; (C) Emerging data: increasing data in support of association to PCA, but not yet moderate-grade evidence; (D) Low/insufficient: limited data or not studied in the context of PCA.

Giri, 2018 JCO

Strong consensus of the Panel:

- To refer for genetic counseling men with early-onset cancer in patient or 1st degree relative with cancer mortality
- To test *HOXB13* for suspected hereditary prostate cancer
- To test *BRCA1/2* for suspected hereditary breast and ovarian cancer
- To factor *BRCA2* into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting.

Moderate consensus of the Panel:

- To test all men with metastatic CRPC, regardless of family history, with stronger agreement to test *BRCA1/2*
- To test *ATM* to inform prognosis and targeted therapy.

Giri, 2018 JCO

Summary

- Prostate cancer is a major cause of morbidity and mortality globally
- Inherited genetic factors underlie a substantial proportion of variability in prostate cancer incidence
 - Common SNPs explain one-third of heritability
 - Rare SNPs explain a small proportion of risk
 - "Missing heritability"
- Genetic variation may explain part of the ethnic disparity in prostate cancer
- Family history may useful in guiding screening recommendations for cancer risk and mortality
- Emerging role of DNA repair mutations in lethal prostate cancer
- Need for consensus around guidelines for genetic testing in prostate cancer